SMD

Frequency Inverter: Basic I/O
with CANopen 0.25 kW ... 4.0 kW
Operating Instructions

Copyright © 2013-2005 Lenze AC Tech Corporation

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written permission from Lenze AC Tech Corporation. The information and technical data in this manual are subject to change without notice. Lenze AC Tech Corporation makes no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of it's merchantability and fitness for a given purpose. Lenze AC Tech Corporation assumes no responsibility for any errors that may appear in this manual.

All information given in this documentation has been carefully selected and tested for compliance with the hardware and software described. Nevertheless, discrepancies cannot be ruled out. We do not accept any responsibility nor liability for damages that may occur. Any necessary corrections will be implemented in subsequent editions.

This document printed in the United States
1 Safety information 3
1.1 Pictographs used in these instructions 4
2 Technical data 6
2.1 Standards and application conditions 6
2.2 Ratings 6
3 Installation 8
3.1 Mechanical installation 8
3.1.1 Dimensions and mounting. 8
3.2 Electrical installation 9
3.2.1 Installation according to EMC requirements 9
3.2.2 Fuses/cable cross-sections 9
3.2.3 Connection diagram 10
3.2.4 Control terminals 11
4 Commissioning 12
4.1 Parameter setting 12
4.2 Electronic programming module (EPM) 12
4.3 Parameter menu 13
4.4 CANopen mapping details 23
4.4.1 RPDO mapping details (h66 / h76) 23
4.4.2 TPDO mapping details (h86 / h96) 26
4.5 Quick CAN set-up 30
5 Troubleshooting and fault elimination 31

About these instructions

This documentation applies to the smd frequency inverter, and contains important technical data including installation, operation, and commissioning instructions.
Please read the instructions in their entirety before commissioning.

V0007
(A) Certifications
C Input Ratings
[B] Type
(D) Output Ratings
[E] Hardware Version
F Software Version

Scope of delivery	Important
-smd inverter (ESMD...) with EPM installed (see Section 4.2)	After receipt of the delivery, check immediately whether the items delivered match the accompanying papers. Lenze does not accept any liability for deficiencies claimed subsequently.
1 Operating Instructions	Claim - visible transport damage immediately to the forwarder. visible deficiencies/incompleteness immediately to your Lenze representative.

Safety information

1 Safety information

Abstract

General Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, moving and rotating. Some surfaces can be hot. Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation creates the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel (IEC 364 and CENELEC HD 384 or DIN VDE 0100 and IEC report 664 or DIN VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with the installation, assembly, commissioning, and operation of the product and who have the qualifications necessary for their occupation.

Application as directed

Drive controllers are components which are designed for installation in electrical systems or machinery. They are not to be used as appliances. They are intended exclusively for professional and commercial purposes according to EN 61000-3-2. The documentation includes information on compliance with the EN 61000-3-2.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed) is prohibited until it is proven that the machine complies with the regulations of the EC Directive 2006/42/EC (Machinery Directive); EN 60204 must be observed.

Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the EMC Directive (2004/108/EC).

The drive controllers meet the requirements of the Low Voltage Directive 2006/95/EC. The harmonised standards of the series EN 50178/DIN VDE 0160 apply to the controllers. NOTE: The availability of controllers is restricted according to EN 61800-3. These products can cause radio interference in residential areas. In this case, special measures can be necessary.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not change any insulation distances during transport or handling. Do not touch any electronic components and contacts. Controllers contain electrostatically sensitive components, which can easily be damaged by inappropriate handling. Do not damage or destroy any electrical components since this might endanger your health!

Electrical connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g. VBG 4) must be observed.

The electrical installation must be carried out according to the appropriate regulations (e.g. cable crosssections, fuses, PE connection). Additional information can be obtained from the documentation.

The documentation contains information about installation in compliance with EMC (shielding, grounding, filters and cables). These notes must also be observed for CE-marked controllers. The manufacturer of the system or machine is responsible for compliance with the required limit values demanded by EMC legislation.

Safety information

Operation

Systems including controllers must be equipped with additional monitoring and protection devices according to the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). You are allowed to adapt the controller to your application as described in the documentation.

DANGER!

- After the controller has been disconnected from the supply voltage, live components and power connection must not be touched immediately, since capacitors could be charged. Please observe the corresponding notes on the controller.
- Do not continuously cycle input power to the controller more than once every three minutes.
- Please close all protective covers and doors during operation.

1.1 Pictographs used in these instructions

Pictograph	Signal word	Meaning	Consequences if ignored
DANGER!	Warning of Hazardous Electrical Voltage.	Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.	
STOP	STOP!	Possible damage to equipment	Damage to drive system or its surroundings
NARNING!	Impending or possible danger for persons	Death or injury	

Safety information

Note for UL approved system with integrated controllers
UL warnings are notes which apply to UL systems. The documentation contains special information about UL.

- Integral solid state protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes. The use of fuses or circuit breakers is the only approved means for branch circuit protection.
- When protected by CC and T Class Fuses, suitable for use on a circuit capable of delivering not more than $200,000 \mathrm{rms}$ symmetrical amperes, at the maximum voltage rating marked on the drive.
- Additionally suitable when protected by a circuit breaker having an interrupting rating not less than 200,000 rms symmetrical amperes, at the maximum voltage rating marked on the drive. (Excludes ESMD113_4T_, ESMD112_2Y_, ESMD113_2T_, ESMD152_2Y_, ESMD153_2T_, ESMD222_2Y_, ESMD223_4T_, ESMD402_2T_, ESMD552_2T_, ESMD752_2T ESMD153_4T_, and ESMD183_4T_).
- Use minimum $75^{\circ} \mathrm{C}$ copper wire only, except for control circuits.
- For control circuits, use wiring suitable for NEC Class 1 circuits only.
- Torque Requirements are listed in section 3.2.3, Connection diagram.
- Shall be installed in a pollution degree 2 macro-environment.

DANGER!

Risk of Electric Shock! Capacitors retain charge for approximately 180 seconds after power is removed. Disconnect incoming power and wait at least 3 minutes before touching the drive.

DANGER!

Risque de choc électrique! Les condensateurs restent sous charge pendant environ 180 secondes après une coupure de courant. Couper l'alimentation et patienter pendant au moins 3 minutes avant de toucher l'entraînement.

WARNING!

The opening of branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, current carrying parts and other components of the controller should be examined and replaced if damaged.

AVERTISSEMENT!

Le déclenchement du dispositif de protection du circuit de dérivation peut être dû à une coupure qui résulte d'un courant de défaut. Pour limiter le risque d'incendie ou de choc électrique, examiner les pièces porteuses de courant et les autres éléments du contrôleur et les remplacer s'ils sont endommagés

Technical data

2 Technical data

2.1 Standards and application conditions

Conformity	CE	Low Voltage Directive (2006/95/EC)
Approvals	UL 508C	Underwriters Laboratories - Power Conversion Equipment
Max. permissible motor cable length ${ }^{(1)}$	shielded:	50 m (low-capacitance)
	unshielded:	100 m
Input voltage phase imbalance	$\leq 2 \%$	
Humidity	$\leq 95 \%$ non-condensing	
Output frequency	0... 240 Hz	
Environmental conditions	Class 3K3 to EN 50178	
Temperature range	Transport	$-25 \ldots+70^{\circ} \mathrm{C}$
	Storage	$-20 \ldots+70^{\circ} \mathrm{C}$
	Operation	$0 \ldots+55^{\circ} \mathrm{C}$ (with $2.5 \% /{ }^{\circ} \mathrm{C}$ current derating above $+40^{\circ} \mathrm{C}$)
Installation height	$0 \ldots 4000 \mathrm{~m}$ a.m.s.l. (with $5 \% / 1000 \mathrm{~m}$ current derating above 1000 m a.m.s.I.)	
Vibration resistance	acceleration resistant up to $0.7 \mathrm{~g} \quad 10 . .150 \mathrm{~Hz}$	
\! Earth leakage current	> 3.5 mA to PE	
Enclosure (EN 60529)	IP 20	
Protection measures against	short circuit, earth fault, overvoltage, motor stalling, motor overload	
Operation in public supply networks (Limitation of harmonic currents according to EN 61000-3-2)	Total power connected to the mains	Compliance with the requirements ${ }^{(2)}$
	$<0.5 \mathrm{~kW}$	With mains choke
	$0.5 \ldots 1 \mathrm{~kW}$	With active filter (in preparation)
	> 1 kW	Without additional measures

(1) For compliance with EMC regulations, the permissible cable lengths may change.
(2) The additional measures described only ensure that the controllers meet the requirements of the EN 61000-3-2. The machine/system manufacturer is responsible for the compliance with the regulations of the machine!

2.2 Ratings

Type	Power [kW]	Mains		Output Current			
		Voltage, frequency	Current [A]	I_{r}		$I_{\text {max }}$ for 60 s	
				$[A]^{(1)}$	$[A]^{(2)}$	$[A]^{(1)}$	$[A]^{(2)}$
ESMD251W2SFA	0.25	1/N/PE 230/240 V 2/PE 230/240 V $\begin{gathered} (180 \mathrm{~V}-0 \% \ldots 264 \mathrm{~V}+0 \%) \\ 50 / 60 \mathrm{~Hz} \\ (48 \mathrm{~Hz}-0 \% \ldots 62 \mathrm{~Hz}+0 \%) \end{gathered}$	3.4	1.7	1.6	2.6	2.4
ESMD371W2SFA	0.37		5.0	2.4	2.2	3.6	3.3
ESMD551W2SFA	0.55		6.0	3.0	2.8	4.5	4.2
ESMD751W2SFA	0.75		9.0	4.0	3.7	6.0	5.5
ESMD152W2SFA	1.5		14.0	7.0	6.4	10.5	9.6
ESMD222W2SFA	2.2		21.0	9.5	8.7	14.3	13.1
ESMD371W2TXA	0.37	3/PE 230/240 V$\begin{gathered} (180 \mathrm{~V}-0 \% \ldots 264 \mathrm{~V}+0 \%) \\ 50 / 60 \mathrm{~Hz} \\ (48 \mathrm{~Hz}-0 \% \ldots 62 \mathrm{~Hz}+0 \%) \end{gathered}$	2.7	2.4	2.2	3.6	3.3
ESMD751W2TXA	0.75		5.1	4.2	3.9	6.3	5.9
ESMD112W2TXA	1.1		6.9	6.0	5.5	9.0	8.3
ESMD152W2TXA	1.5		7.9	7.0	6.4	10.5	9.6
ESMD222W2TXA	2.2		11.0	9.6	8.8	14.4	13.2
ESMD302W2TXA	3.0		13.5	12.0	11.0	18.0	16.5
ESMD402W2TXA	4.0		17.1	15.2	14.0	22.8	21.0

(1) For rated mains voltage and carrier frequencies $4,6,8 \mathrm{kHz}$
(2) For rated mains voltage and carrier frequency 10 kHz

Installation

3 Installation

3.1 Mechanical installation

3.1.1 Dimensions and mounting

smd002

Type	a [mm]	a1 [mm]	b [mm]	b1 [mm]	b2 [mm]	c [mm]	m [kg]
ESMD251W2SFA	93	84	146	128	17	83	0.5
ESMD371W2SFA							
ESMD551W2SFA	93	84	146	128	17	92	0.6
ESMD751W2SFA							
ESMD152W2SFA	114	105	146	128	17	124	1.2
ESMD222W2SFA	114	105	146	128	17	140	1.4
ESMD371W2TXA	93	84	146	128	17	83	0.5
ESMD751W2TXA	93	84	146	128	17	92	0.6
ESMD112W2TXA	93	84	146	128	17	141	1.2
ESMD152W2TXA							
ESMD222W2TXA	114	105	146	128	17	140	1.4
ESMD302W2TXA	114	105	146	128	17	171	1.9
ESMD402W2TXA	114	105	146	100	17	171	1.7

WARNING!
Drives must not be installed where subjected to adverse environmental conditions such as: combustible, oily, or hazardous vapors or dust; excessive moisture; excessive vibration or excessive temperatures. Contact Lenze for more information.

3.2 Electrical installation

3.2.1 Installation according to EMC requirements

| EMC |
| :--- | :--- | :--- |
| Compliance with EN 61800-3/A11 |
| Noise emission
 Compliance with limit value class A according to EN 55011 if installed in a control
 cabinet with the appropriate footprint filter and the motor cable length does not
 exceed 10 m |
| A Screen clamps |
| B Control cable |
| C Low-capacitance motor cable |
| (core/core $\leq 75 \mathrm{pF} / \mathrm{m}$, core/screen $\leq 150 \mathrm{pF} / \mathrm{m}$) |
| D Electrically conductive mounting plate |
| E Filter (if required) |

3.2.2 Fuses/cable cross-sections

Type	Installation to EN 60204-1			Installation to UL		E.I.c.b. ${ }^{(2)}$
	Fuse	Miniature circuit breaker	$\begin{gathered} \text { L1, L2/N, } \\ \text { L3, PE } \end{gathered}$	Fuse ${ }^{(3)}$	$\begin{gathered} \mathrm{L} 1, \mathrm{~L} 2 / \mathrm{N}, \\ \mathrm{~L} 3, \mathrm{PE} \end{gathered}$	
	[A]	[A]	[mm^{2}]	[A]	[AWG]	
ESMD251W2SFA ... ESMD551W2SFA ESMD371W2TXA ... ESMD112W2TXA	10	C10	2.5	10	14	$\geq 30 \mathrm{~mA}$
ESMD152W2TXA	16	C16	2.5	12	14	
ESMD751W2SFA, ESMD222W2TXA	16	C16	2.5	15	14	
ESMD152W2SFA, ESMD302W2TXA	20	C20	4	20	12	
ESMD222W2SFA, ESMD402W2TXA	25	C25	$6{ }^{(4)}$	25	10	

(1) Observe the applicable local regulations
(2) Pulse-current or universal-current sensitive earth leakage circuit breaker
(3) UL Class CC or T fast-acting current-limiting type fuses, 200,000 AIC, required. Bussman KTK-R, JJN, JJS or equivalent
(4) Connection without end ferrules or with attached pin end connectors

Observe the following when using E.I.c.b:

- Installation of E.I.c.b only between supplying mains and controller.
- The E.I.c.b can be activated by:
- capacitive leakage currents between the cable screens during operation (especially with long, screened motor cables).
- connecting several controllers to the mains at the same time.
- RFI filters

Installation

3.2.3 Connection diagram

DANGER!

- Hazard of electrical shock! Circuit potentials are up to 240VAC above earth ground. Capacitors retain charge after power is removed. Disconnect power and wait until the voltage between $\mathrm{B}+$ and $\mathrm{B}-$ is $0 V D C$ before servicing the drive.
- Do not connect mains power to the output terminals (U, V, W)! Severe damage to the drive will result.
- Do not cycle mains power more than once every three minutes. Damage to the drive will result.

3.2.4 Control terminals

Terminal	Data for control connections (printed in bold = Lenze setting)			
CAN_GND	CAN earth ground	For reliable communication make sure terminal CAN_GND is connected to CAN network GND/common. If only two wires are used (CAN_H and CAN_L) in the network, connect CAN_GND to chassis/earth ground.		
CAN_L	CAN low	If controller is located at either end of the network, a terminating resistor (120Ω typical) should be connected across CAN_L and CAN_H		
CAN_H	CAN high			
28	Digital input Start/Stop	$\begin{aligned} & \text { LOW }=\text { Stop }(\mathbf{O F F}) \\ & \text { HIGH }=\text { Run Enable } \end{aligned}$	$\mathrm{R}_{\mathrm{i}}=3.3 \mathrm{k} \Omega$	
20	Internal DC supply for digital inputs	+12 V, max. 20 mA		
E1	Digital input configurable with CE1 Activate fixed setpoint 1 (JOG1)	HIGH $=$ JOG1 active	$\mathrm{R}_{\mathrm{i}}=3.3 \mathrm{k} \Omega$	
E2	Digital input configurable with CE2 Direction of rotation	$\begin{aligned} & \text { LOW }=\text { CW rotation } \\ & \text { HIGH }=\text { CCW rotation } \end{aligned}$		
E3	Digital input/output configurable with CE3 Activate DC injection brake (DCB)	HIGH = DCB active		
7	Reference potential			
K12	Relay output (normally-open contact) configurable with C08 Fault (TRIP)	AC $250 \mathrm{~V} / 3 \mathrm{~A}$ DC $24 \mathrm{~V} / 2 \mathrm{~A} . . \mathrm{2} 240 \mathrm{~V} / 0.22 \mathrm{~A}$		
K14				

Protection against contact

- All terminals have a basic isolation (single insulating distance)
- Protection against contact can only be ensured by additional measures i.e. double insulation

4 Commissioning

4.1 Parameter setting

V0003

NOTE

If the password function is enabled, the password must be entered into COO to access the parameters. C00 will not appear unless the password function is enabled. See C94.

4.2 Electronic programming module (EPM)

The EPM contains the controller's memory. Whenever parameter settings are changed, the values are stored in the EPM. It can be removed, but must be installed for the controller to operate (a missing EPM will trigger an FI fault). The controller ships with protective tape over the EPM that can be removed after installation.
A without power; OEM settings to be default settings; fast copying of EPMs when multiple controllers require identical settings. It can also store up to 60 custom parameter files for even faster controller programming

4.3 Parameter menu

Code		Possible Settings		IMPORTANT
No.	Name	Lenze	Selection	
[00	Password entry	0	999	Visible only when password is active (see C94)
[01	Setpoint source	0	Setpoint source:	Control configuration:
			0,1 Code c40	Control = terminals Programming = keypad/limited CANopen Monitoring = CANopen Note: RPDOs not processed in these modes
			2 CANopen	Control = terminals Programming = CANopen / keypad Monitoring = CANopen Note: Only frequency setpoint part of RPDOs are processed in this mode
			3 CANopen	Control = CANopen Programming = CANopen / keypad Monitoring = CANopen
[02	Load Lenze setting	0 No action/loading complete 1 Load 50 Hz Lenze settings 2 Load 60 Hz Lenze settings 3 Load OEM settings 4 Translate		- C02 = $1 \ldots 4$ only possible with DFF - $\mathrm{C} 02=2: \mathrm{C} 11, \mathrm{C} 15=60.0 \mathrm{~Hz}$, C87 $=1740$ RPM, and C89 $=60 \mathrm{~Hz}$
			WARNING! $\mathrm{C} 02=1 \ldots 3$ overwrites all settings! codes CE1...CE3.	RIP circuitry may be disabled! Check
		$\stackrel{\circ}{\mathbf{1}}$	NOTE If an EPM that contains compatible installed, C02 $=4$ converts the data	ata from a previous software version is the current version.

Commissioning

Code		Possible Settings				IMPORTANT
No.	Name	Lenze	Selec			
[10	Minimum output frequency	0.0	0.0	$\{\mathrm{Hz}\}$	240	C10 not active for fixed setpoints or setpoint selection via c40
$[11$	Maximum output frequency	50.0	7.5	$\{\mathrm{Hz}\}$	240	C11 is never exceeded
			WARNING! Consult motor/machine manufacturer before operating above rated frequency. Overspeeding the motor/machine may cause damage to equipment and injury to personne!!			
[12	Acceleration time	5.0	0.0	\{s\}	999	- C12 = frequency change $0 \mathrm{~Hz} . . \mathrm{C} 11$ - C13 = frequency change C11... 0 Hz
[1]	Deceleration time	5.0		\{s\}	999	
[14	Operating Mode	2	0 Linear characte Auto-Boost 1 Square-law cha Auto-Boost 2 Linear characte $V_{\text {min }}$ boost 3 Square-law cha constant $\mathrm{V}_{\text {min }}$ 			- Linear characteristic: for standard applications - Square-law characteristic: for fans and pumps with square-law load characteristic - Auto boost: load-dependent output voltage for low-loss operation
$[15$	V/f reference point	50.0	25.0 Set th (nam	$\{\mathrm{Hz}\}$ tor fr stand	999 ons	
[16	$V_{\text {min }}$ boost (optimization of torque behavior)	6.0	0.0 Set a motor (appr motor curre	\{\%\} ission n at slip increa $54)=$	40.0 oaded motor	
$[17$	Frequency threshold $\left(Q_{\text {min }}\right)$	0.0	0.0	$\{\mathrm{Hz}\}$	240	See C08, selection 7 Reference: setpoint
[旧	Chopper frequency	2	$\begin{array}{ll} 0 & 4 \\ 1 & 6 \\ 2 & 8 \\ 3 & 1 \end{array}$			- As chopper frequency is increased, motor noise is decreased - Observe derating in Section 2.2 - Automatic derating to 4 kHz at $1.2 \mathrm{xI}_{\mathrm{r}}$
[21	Slip compensation	0.0	0.0	\{\%\}	40.0	Change C21 until the motor speed no longer changes between no load and maximum load
[22	Current limit	150	30 Refe	$\{\%\}$ rated	150 ent	- When the limit value is reached, either the acceleration time increases or the output frequency decreases
[24	Accel boost	0.0	0.0	\{\%\}	20.0	Accel boost is only active during acceleration
[36	Voltage - DC injection brake (DCB)	4.0	0.0	\{\%\}	50.0	- See CE1...CE3 and c06 - Confirm motor suitability for use with DC braking

Commissioning

Code		Possible Settings				IMPORTANT
No．	Name	Lenze	Selec			
［37	Fixed setpoint 1 （JOG 1）	20.0	0.0	\｛Hz\}	240	
［Э日	Fixed setpoint 2 (JOG 2)	30.0	0.0	\｛Hz\}	240	
$[39$	Fixed setpoint 3 （JOG 3）	40.0	0.0	\｛Hz\}	240	
［46	Frequency setpoint		0.0	\｛Hz\}	240	Display：Setpoint via CANopen or function UP／DOWN
［50	Output frequency		0.0	\｛Hz\}	240	Display
［5］	DC bus voltage		0.0	\｛\％\}	255	Display
$[54$	Motor current		0.0	\｛\％\}	255	Display
［日7	Motor rated speed	1390	300	\｛RPM \}	32000	Set to motor nameplate speed
［日9	Motor rated frequency	50	10	$\{\mathrm{Hz}\}$	1000	Set to motor nameplate frequency
$[94$	User password	0	0 Chan will st	$\text { " } 0 \text { " (no p }$	999 d），value	When set to a value other than 0 ， must enter password at C00 to access parameters
$[99$	Software version					Display，format：x．yz
c05	Holding time－ automatic DC injection brake （Auto－DCB）	0.0	$\begin{aligned} & 0.0 \\ & 0.0= \\ & 999= \end{aligned}$	\｛s\} us brake	999	－Automatic motor braking below 0.1 Hz by means of motor DC current for the entire holding time（afterwards：U，V， W inhibited） －Confirm motor suitability for use with DC braking
c20	$I^{2} t$ switch－off （thermal motor monitoring）	100	$\begin{aligned} & 30 \\ & 100 \% \end{aligned}$	\｛\％\} ted ou		－Triggers $0[6$ fault when motor current exceeds c20 for too long －Correct setting $=($ motor nameplate current）／（smd output current rating） X 100\％ －Example：motor $=6.4 \mathrm{amps}$ and $\boldsymbol{s m d}$ $=7.0 \mathrm{amps}$ ；correct setting $=91 \%$ （ $6.4 / 7.0=0.91 \times 100 \%=91 \%$ ）
		$\stackrel{\bullet}{\mathbf{i}}$	NOTE Do not set above the rated motor current as listed on the motor dataplate．The motor thermal overload function is UL approved as a motor protection device．If line power is cycled，the motor thermal state is reset to cold state．Cycling power after an overload fault may result in reducing the motor life．			
c21	Motor Overload Type	00	00 Speed Compensation Reduces the allowable continuous current when operating below 30 Hz ． 01 No Speed Compensation Example：Motor is cooled by forced ventilation as apposed to shaft mounted，self cooling fans．			 Ir：rated current（\％），f：motor frequency (Hz)
c40	Frequency setpoint via keys 0	0.0	0.0	\｛Hz\}	240	Only active if C01＝0， 1

Code		Possible Settings		IMPORTANT
No.	Name	Lenze	Selection	
542	Start condition (with mains on)	1	$\begin{array}{ll}0 & \begin{array}{l}\text { Start after LOW-HIGH change at } \\ \text { terminal } 28\end{array} \\ 1 & \text { Auto start if terminal } 28=\text { HIGH }\end{array}$	See also c70
		$!$	WARNING! Automatic starting/restarting may cause damage to equipment and/or injury to personnel! Automatic starting/restarting should only be used on equipment that is inaccessible to personnel.	
c60	Mode selection for c61	0	0 Monitoring only 1 Monitoring and editing	c60 = 1 allows the keys $\boldsymbol{\otimes}$ to adjust speed setpoint (c40) while monitoring c61
c61	Present status/error		status/error message	- Display - Refer to Section 5 for explanation of status and error messages
с62	Last error		error message	
c63	Last error but one		eror message	
¢70	Configuration TRIP reset (error reset)	0	0 TRIP reset after LOW-HIGH change at terminal 28, mains switching, or after LOW-HIGH change at digital input "TRIP reset" 1 Auto-TRIP reset	- Auto-TRIP reset after the time set in c71 - More than 8 errors in 10 minutes will trigger \boldsymbol{r} St fault
		!	WARNING! Automatic starting/restarting may cause personnel! Automatic starting/restarting inaccessible to personnel.	damage to equipment and/or injury to should only be used on equipment that is
c71	Auto-TRIP reset delay	0.0	0.0 \{s\} 60.0	See c70
c78	Operating time counter		Display Total time in status "Start"	$0 . .999$ h: format xxx 1000... 9999 h : format 10000... 99999 h: form ters
c79	Mains connection time counter		Display Total time of mains = on	
CANopen / System bus parameters				
Һ42	Guard time	0	00 \{ms \} 65535	- h42 x h43 = node life time - If RTR frame with ID $=0 \times 700+$ Node ID (h50) is not received during the node life time, the controller will react according to h44 - If heart beat message is enabled, the guard function is disabled - h44 is only active when C01 = 3 and h42 x h43>0
Н4ヨ	Life time factor	0	0255	
h44	Guard time event reaction	0	0 Not active 1 Inhibit 2 Quick stop 3 Trip fault $F[\exists$	
h45	Error behavior	1	0 transition to pre-operational (only if current state is operational) 1 No state change 2 transition to stopped	Specifies action taken by the drive when it encounters a communication error (ex. Node guarding event or Bus Off)
НЧБ	Message monitoring time	0	0 \{ms 065535	- h46 and h47 can be used to monitor all valid messages (e.g. SDO, SYNC,
1477	Message monitoring time out reaction	0	0 Not active 1 Inhibit 2 Quick stop 3 Trip fault $F[\exists$	PDO...). - $\mathrm{h} 46=0$ or $\mathrm{h} 47=0$ disables message monitoring function - h 47 is only active when $\mathrm{C} 01=3$

Commissioning

Code		Possible Settings		IMPORTANT
No.	Name	Lenze	Selection	
Н4日	Monitoring timeout status		Bits: 0 Guard time timeout 1 No valid message received 2 RPD01 timeout 3 RPD02 timeout 4 CAN initialization fault	- Read-only - Indicates cause of $F[\exists$ fault, inhibit, or quick stop (depending on the settings of h44, h47, h65, h75)
				Bits $5 . . .7$ create a binary number from 0 to 7 indicating the number of overflows in the receive buffers (h49 bits 6 and 7)
			6 Recieve buffers overflow	
			7	
h49	CAN controller status value (8-bit value)		Bits: 0 Receive/transmit error warning flag (96 or more errors) 1 Receive error warning flag (96 or more receive errors) 2 Transmit error warning flag (96 or more transmit errors) 3 Receive error passive flag (128 or more receive errors) 4 Transmit error passive flag (128 or more transmit errors) 5 Bus-off error flag 6 Receive buffer 0 overflow flag 7 Receive buffer 1 overflow flag	- Read-only - CAN warnings and errors
h50 ${ }^{(1)}$	CAN address (Node ID)	1	1127	If $\mathrm{h} 53=0,1$: maximum setting $=63$
h5 ${ }^{(1)}$	CAN baud rate	5	0 $10 \mathrm{kbps}($ max distance $=5000 \mathrm{~m})$ 1 $20 \mathrm{kbps}($ max distance $=2500 \mathrm{~m})$ 2 $50 \mathrm{kbps}($ max distance $=1000 \mathrm{~m})$ 3 $125 \mathrm{kbps}($ max distance $=500 \mathrm{~m})$ 4 $250 \mathrm{kbps}(\max$ distance $=250 \mathrm{~m})$ 5 $500 \mathrm{kbps}($ max distance $=100 \mathrm{~m})$	
h52 ${ }^{(1)}$	CAN bootup mode	0	0 Pre-operational 1 Operational 2 Pseudo-master mode	- h52 = 0: Controller enters preoperational state - h 52 = 1: Controller enters operational state automatically (Slave with autostart enabled 0x1F80 NMT bootup - bit 2) - h52 = 2: Controller sends "NMT start all nodes" after boot-up time (h55) and enters operational state (not NMT master)

[^0]
Commissioning

Code		Possible Settings		IMPORTANT
No.	Name	Lenze	Selection	
h53 ${ }^{(1)}$	Parameter channel 2 (SDO\#2 support for Lenze Systembus)	0	0 Enable: Node ID range (1...63) with default COB ID for SYNC, RPDO and TPDO 1 Enable: Node ID range (1...63) with programmable COB ID using h54, h60, h70, h80, h90 2 Disable: Node ID range (1...127) with default COB ID for SYNC, RPDO, and TPDO Disable: Node ID range (1...127) with programmable COB ID using h54, h60, h70, h80, h90	- h53 = 0, 1: CAN address 1...63; used for SDO1. 64... 127 used for SDO2. - SDO\#1 COB ID $=1536$ + Node ID - SDO\#2 COB ID $=1600$ + Node ID (if enabled)
h54 ${ }^{(1)}$	SYNC COB ID	128	02047	Note: Controller does not generate SYNC object
h55 ${ }^{(1)}$	Boot up time	3000	0 \{ms 066535	Controller sends "NMT start all nodes" message after this delay (active only when h52 = 2)
h56	Heartbeat time	2000	0 \{ms 066535	- Producer heartbeat time - h56 = 0 disables heartbeat transmission
h5日	Reset CAN node	0	0 No action 1 Reset CAN communication	On transition from 0 to 1, re-initializes CAN controller and activates changes made to parameters marked with ${ }^{(1)}$
		!	WARNING! CAN re-initialization may activate new RPDO configurations, which can result in changes to present controller state, including starting.	
h59	CANopen status		0 Not initialized 1 Initializing 2 Stopped 3 Pre-operational 4 reserved 5 Operational	- Read-only - Note: RPDOs and TPDOs are only active in operational state (h59 = 5)
RPDO\#1 configuration parameters				
h60 ${ }^{(1)}$	RPDO\#1 COB ID	513	02047	If h53 $=0$, 2: Setting will change to 512 + Node ID during power-up or h58 reset.
h6 (1)	RPDO\#1 enable/ disable	1	$\begin{array}{\|ll} \hline 0 & \text { Disable } \\ 1 & \text { Enable } \end{array}$	
h62	RPDO\#1 transmission type	255	0255	- h62 = 0...240: transfer on every SYNC received. - $\mathrm{h} 62=254,255$: immediate transfer
h64	RPDO\#1 event monitoring timer	0	0 \{ms 065535	h64 = 0: monitoring disabled
h65	RPDO\#1 time out reaction	0	0 Not active 1 Inhibit 2 Quick stop 3 Trip fault $F[3$	Only active when C01 = 3

${ }^{(1)}$ These parameters take effect only after power-up, h58 reset, "NMT reset node", or "NMT reset communication services"

Commissioning

Code		Possible Settings		IMPORTANT
No.	Name	Lenze	Selection	
h66 ${ }^{(1)}$	RPDO\#1 mapping (see RPDO mapping details)	0	0 C0135 control word + C46 signed 1 C0135 control word + C46 unsigned 2 402 Drives and Motion Control: PDO Controlword 0x6040 3 402 Drives and Motion Control: PDO Controlword 0x6040 + vl target velocity 0x6042 4 C0135 Controlword + C46 signed and scaled + Digital output	C46 scaling: $\pm 50= \pm 1.0 \mathrm{~Hz}$ C46 scaling: $10=1.0 \mathrm{~Hz}$ - vl target velocity units = signed RPM - RPM calculation based on C87 and C89 C46 scaling: +/- $16384=$ C11
h69	RPDO\#1 status		0255	- Read-only - Number of received RPDO\#1 messages - Above 255 , starts over at 0
RPDO\#2 configuration parameters				
$\rightarrow 7{ }^{(1)}$	RPDO\#2 COB ID	769	02047	If h53 $=0$, 2: Setting will change to 768 + Node ID during power-up or h58 reset.
h7 ${ }^{(1)}$	RPDO\#2 enable/ disable	0	$\begin{array}{ll} \hline 0 & \text { Disable } \\ 1 & \text { Enable } \end{array}$	
472	$\begin{array}{\|l\|} \hline \text { RPDO\#2 } \\ \text { transmission type } \end{array}$	255	0255	- h72 = 0...240: transfer on every SYNC received - $\mathrm{h} 72=254,255$: immediate transfer
h74	RPDO\#2 event monitoring timer	0	0 \{ms \} 65535	h74 = 0: monitoring disabled
h75	RPDO\#2 time out reaction	0	0 Not active 1 Inhibit 2 Quick stop 3 Trip fault F[3	Only active when C01 = 3
h76 ${ }^{(1)}$	RPDO\#2 mapping (see RPDO mapping details)	0	0 C0135 control word + C46 signed 1 C0135 control word +C 46 unsigned 2 402 Drives and Motion Control: PDO Controlword 0x6040 3 402 Drives and Motion Control: PDO Controlword 0x6040 + vl target velocity 0x6042 4 C0135 Controlword + C46 signed and scaled + Digital output	$\begin{aligned} & \text { C46 scaling: } \pm 50= \pm 1.0 \mathrm{~Hz} \\ & \text { C46 scaling: } 10=1.0 \mathrm{~Hz} \end{aligned}$ - vl target velocity units = signed RPM - RPM calculation based on C87 and C89 C46 scaling: +/-16384 = C11
h79	RPDO\#2 status		0255	- Read-only - Number of received RPDO\#2 messages - Above 255 , starts over at 0

[^1]| Code | | Possible Settings | | IMPORTANT |
| :---: | :---: | :---: | :---: | :---: |
| No. | Name | Lenze | Selection | |
| TPDO\#1 configuration parameters | | | | |
| h $\mathrm{Ba}^{(1)}$ | TPDO\#1 COB ID | 385 | 02047 | If h53 $=0,2$: Setting will change to 384 + Node ID during power-up or h58 reset. |
| h日 (1) | TPDO\#1 enable/ disable | 1 | 0 Disable
 1 Enable (no RTR)
 2 Enable (with RTR) | Enable individual polling of TPDO\#1 |
| h日2 | TPDO\#1 transmission type | 255 | 0255 | - h82 = 0...240: Transmit TPDO\#1 after every $\mathrm{n}^{\text {th }}$ SYNC received + Event + RTR (if enabled)
 - h82 = 253: Event + RTR (if enabled)
 - h82 = 254: COS triggered (WORD0 of TPDO\#1) + Event + RTR (if enabled)
 - h82 = 255: Event + RTR (if enabled) |
| h $\mathrm{Bl}^{(1)}$ | TPDO\#1 inhibit time | 50 | $0 \quad\{0.1 \mathrm{~ms}\} \quad 65535$ | Sets minimum time between TPDO\#1 transmissions (h83 = $50=5.0 \mathrm{~ms}$) |
| h84 | TPDO\#1 event timer | 0 | 0 \{ms \} 65535 | - Sets the fixed interval for TPDO\#1 transmission
 - h84 = 0: disables event timer |
| h $\mathrm{BE}^{(1)}$ | TPDO\#1 mapping (see TPDO mapping details) | 0 | $0 \quad$ C0150 + C50 signed
 1 C0150 + C50 unsigned
 2 Controller status in C0135 format + frequency setpoint signed
 3 Controller status in C0135 format + frequency setpoint unsigned
 4402 Device profile: Statusword 0×6041
 5402 Device profile: Statusword $0 \times 6041+\mathrm{vl}$ control effort 0×6044
 6 C0150 + C50 signed and scaled + digital input | $\begin{aligned} & \text { C50 scaling: } \pm 50= \pm 1.0 \mathrm{~Hz} \\ & \text { C50 scaling: } 10=1.0 \mathrm{~Hz} \end{aligned}$
 Can be used to control other controllers (see example in section 4.5)
 - vl control effort units = signed RPM
 - RPM calculation based on C87 and C89
 C50 scaling: +/- $16384=$ C11 |
| h 67 | TPDO\#1 WORD0 bit mask | 65535 | 065535 | - COS (change of state) bit mask applied to WORD0 of TPDO selected by h86.
 - h87 = 65535: activates all bits of WORDO for COS triggering
 - h87 = 0: disables COS triggering |
| h89 | TPDO\#1 status | | 0255 | - Read-only
 - Number of transmitted TPDO\#1 messages
 - Above 255, starts over at 0 |

[^2]| Code | | Possible Settings | | IMPORTANT |
| :---: | :---: | :---: | :---: | :---: |
| No. | Name | Lenze | Selection | |
| TPDO\#2 configuration parameters | | | | |
| h90 ${ }^{(1)}$ | TPDO\#2 COB ID | 641 | 02047 | If h53 $=0,2$: Setting will change to 640 + Node ID during power-up or h58 reset. |
| h9 (1) | $\begin{aligned} & \text { TPDO\#2 enable/ } \\ & \text { disable } \end{aligned}$ | 0 | 0 Disable
 1 Enable (no RTR)
 2 Enable (with RTR) | Enable individual polling of TPDO\#2 |
| h92 | TPDO\#2 transmission type | 255 | 0255 | - h92 = 0...240: Transmit TPDO\#2 after every $\mathrm{n}^{\text {th }}$ SYNC received + Event + RTR (if enabled)
 - h92 = 253: Event + RTR (if enabled)
 - h92 = 254: COS triggered (WORDO of TPDO\#2) + Event + RTR (if enabled)
 - h92 = 255: Event + RTR (if enabled) |
| h93(1) | TPDO\#2 inhibit time | 50 | $0 \quad\{0.1 \mathrm{~ms}\} \quad 65535$ | Sets minimum time between TPDO\#2 transmissions (h93 $=50=5.0 \mathrm{~ms}$) |
| h94 | TPDO\#2 event timer | 0 | 0 \{ms 065535 | - Sets the fixed interval for TPDO\#2 transmission
 - h94 = 0: disables event timer |
| h95 ${ }^{(1)}$ | TPDO\#2 mapping (see TPDO mapping details) | 0 | 0 C0150 + C50 signed
 1 C0150 + C50 unsigned
 2 Controller status in C0135 format +
 frequency setpoint signed
 3 Controller status in C0135 format +
 frequency setpoint unsigned
 4 402 Device profile: Statusword
 0x6041
 5 402 Device profile: Statusword
 $0 \times 6041+$ vl control effort 0x6044
 6 C0150 + C50 signed and scaled +
 digital input
 | $\begin{aligned} & \text { C50 scaling: } \pm 50= \pm 1.0 \mathrm{~Hz} \\ & \text { C50 scaling: } 10=1.0 \mathrm{~Hz} \end{aligned}$
 Can be used to control other controllers (see example in section 4.5)
 - vl control effort units = signed RPM
 - RPM calculation based on C87 and C89
 C50 scaling: +/- $16384=$ C11 |
| h97 | $\begin{aligned} & \text { TPDO\#2 WORD0 } \\ & \text { bit mask } \end{aligned}$ | 65535 | 065535 | - COS (change of state) bit mask applied to WORDO of TPDO selected by h96.
 - h97 = 65535: activates all bits of WORDO for COS triggering
 - h87 = 0: disables COS triggering |
| h99 | TPDO\#2 status | | 0255 | - Read-only
 - Number of transmitted TPDO\#2 messages
 - Above 255, starts over at 0 |
| ก20 | Power up state | 0 | $\begin{array}{ll} \hline 0 & \text { Quick stop } \\ 1 & \text { Inhibit } \end{array}$ | Selects controller power up state when C01 = 3 (CANopen control) |

[^3]
Commissioning

4.4 CANopen mapping details

4.4.1 RPDO mapping details (h66 / h76)

	Bit	h66 / h76 setting = 0

	Bit	h66 / h76 setting = 1

Commissioning

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	Bit	h66 / h 76 setting $=2$
	0	$\begin{aligned} & 0=\text { switch off(}{ }^{(2)} \\ & 1=\text { switch on } \end{aligned}$
	1	$0=$ disable voltage ${ }^{(2)}$ 1 = enable voltage
	2	0 = execute quick stop 1 = not quick stop
	3	$\begin{aligned} & 0=\text { inhibit }{ }^{(2)} \\ & 1=\text { enable } \end{aligned}$
	4	reserved
	5	reserved
	6	reserved
	7	fault reset on transition from 0 to 1
	8	$\begin{aligned} & 0=\text { execute motion } \\ & 1=\text { halt }^{2}(2) \end{aligned}$
	9	reserved
	10	reserved
	11	Direction of rotation 0 = CW (forward) 1 = CCW (reverse)
	12 13	$\begin{aligned} & \text { JOG1, JOG2, JOG3 } \\ & 0=\mathrm{C} 46 \text { active } \\ & 1=\text { JOG1 (C37) active } \\ & 2=\text { JOG2 (C38) active } \\ & 3=\text { JOG3 (C39) active } \end{aligned}$
	14	DC brake $0=\mathrm{DC}$ brake not active $1=\mathrm{DC}$ brake active
	15	reserved

	Bit	h66 / h76 setting = 3

[^4]| | Bit | h66 / h76 setting = 4 |
| :---: | :---: | :---: |

4.4.2 TPDO mapping details (h86 / h96)

	Bit	h86 / h96 setting = 1

	Bit	h86 / h96 setting = 2

	Bit	h86 / h96 setting = 3

	Bit	h86 / h96 setting = 6

Commissioning

4.5 Quick CAN set-up

1. Power up the controller and set h50 (CAN address) and h51 (CAN baud rate) to appropriate values.
2. Power down the controller and connect the communication cable. For reliable communication make sure terminal CAN_GND is connected to CAN network GND/ common. If only two wires are used (CAN_H and CAN_L) in the network, connect CAN_ GND to chassis/earth ground.
3. Power up the controller.
4. Use Global Drive Control Software to configure the required operation of the controller.

Example: Controller \#2 needs to follow the operation of controller \#1 (start/stop, speed, etc). Controller \#1 can be controlled by CANopen or traditional control elements (relays, etc).

Controller \#1 configuration		
No.	Name	Setting
h50	CAN address (Node ID)	1
h5 I	CAN baud rate	5
h52	System bus participant	1Slave with autostart enabled
h53	Parameter channel 2 (SDO\#2)	0Enable with default COB ID
h日4	TPDO\#1 event timer	10 ms
h日6	TPDO\#1 mapping	3Controller status in C0135 format + frequency setpoint unsigned

$\left.$| Controller \#2 configuration | | |
| :--- | :--- | :--- |
| No. | Name | Setting |
| CD I | Setpoint source | 3 |
| CANopen control | | |
| h45 | Error behavior | 1 |
| No state change | | |
| h50 | CAN address (Node ID) | 2 |
| h5 I | CAN baud rate | 5 |
| h52 | System bus participant | 1Slave with autostart
 enabled |
| h53 | Parameter channel 2
 (SDO\#2) | 1Enable with prog.
 COB ID |
| h60 | RPDO\#1 COB ID | 385
 (h80 from controller \#1) |
| h64 | RPDO\#1 event
 monitoring timer | 50 ms |
| h65 | RPDO\#1 time out
 reaction | 1 | | Inhibit |
| :--- | \right\rvert\, | h65 | RPDO\#1 mapping | C0135 control word
 + C46 frequency
 setpoint unsigned |
| :--- | :--- | :--- |

After setting the parameters, perform node reset using parameter h58 or cycle the power.
After these controllers are configured as above, controller \#2 will follow the operation of controller \#1 including: Inhibit state, Quick Stop, DC brake, JOG speed selections, direction, and speed. For additional safety, controller \#2 will transition to inhibit state if valid PDO is not received from controller \#1 within 50 ms .

Troubleshooting and fault elimination

5 Troubleshooting and fault elimination

Status		Cause	Remedy
$\begin{gathered} \text { e.g. } \\ 50.0 \end{gathered}$	Present output frequency	Trouble free operation	
DFF	Stop (outputs U, V, W inhibited)	LOW signal at terminal 28	Set terminal 28 to HIGH
Inh	Inhibit (outputs U, V, W inhibited)	Controller is set up for CANopen control (see C01)	Start the controller via CANopen
$5 t P$	Output frequency $=0 \mathrm{~Hz}$ (outputs U, V, W inhibited)	Setpoint $=0 \mathrm{~Hz}$	Setpoint selection
		Quick stop activated through digital input	Deactivate Quick stop
br	DC-injection brake active	DC-injection brake activated - via digital input - automatically	Deactivate DC-injection brake - digital input = LOW - automatically after holding time c06 has expired
[L	Current limit reached	Controllable overload	Automatically (see C22)
LU	Undervoltage on DC bus	Mains voltage too low	Check mains voltage
dE[Overvoltage on DC bus during deceleration (warning)	Excessively short deceleration time (C13)	Automatically if overvoltage $<1 \mathrm{~s}$, ㄴU, if overvoltage > 1 s
nEd	No access to code	Can only be changed when the controller is in DFF or 1 nh	Set terminal 28 to LOW or inhibit through CANopen

Error		Cause	Remedy ${ }^{(1)}$
${ }_{c} \mathrm{~F}$	Data on EPM not valid	Data not valid for controller	- Use EPM providing valid data - Load Lenze setting
[F		Data error	
GF		OEM data not valid	
FI	EPM error	EPM missing or defective	Power down and replace EPM
[F]	Digital inputs not uniquely assigned	E1...E3 assigned with the same digital signals	Each digital signal can only be used once
		Either just "UP" or "DOWN" used	Assign the missing digital signal to a second terminal
EEr	External error	Digital input "TRIP set" is active	Remove external error
$\begin{gathered} F 2 . . F D \\ \text { IF } \\ \hline \end{gathered}$	Internal fault		Please contact Lenze
F[3	CAN communication timeout	Monitored CAN messages not received	- Check h48 for cause - Increase timeout settings - Check CAN wiring
F[5	CAN initialization failed	CAN controller failure	- Perform CAN reset (h58) - Cycle power
L[Automatic start inhibited	$c 42=0$	LOW-HIGH signal change at terminal 28

[^5]| Error | | Cause | Remedy ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: |
| O[1 | Short-circuit or overload | Short-circuit | Find reason for short-circuit; check motor cable |
| | | Excessive capacitive charging current of the motor cable | Use shorter motor cables with lower charging current |
| | | Acceleration time (C12) too short | - Increase acceleration time
 - Check controller selection |
| | | Defective motor cable | Check wiring |
| | | Internal fault in motor | Check motor |
| | | Frequent and long overload | Check controller selection |
| - 0 | Earth fault | Grounded motor phase | Check motor/motor cable |
| | | Excessive capacitive charging current of the motor cable | Use shorter motor cables with lower charging current |
| DC6 | Motor overload (1^{2} t overload) | Motor is thermally overloaded, due to:
 - impermissable continuous current
 - frequent or too long acceleration processes | - Check controller selection
 - Check setting of c20 |
| OH | Controller overtemperature | Controller too hot inside | - Reduce controller load
 - Improve cooling |
| 0 | Overvoltage on DC bus | Mains voltage too high | Check mains voltage |
| | | Excessively short deceleration time or motor in generator mode | Increase deceleration time or use dynamic braking option |
| | | Earth leakage on the motor side | Check motor/motor cable (separate motor from controller) |
| r5t | Faulty auto-TRIP reset | More than 8 errors in 10 minutes | Depends on the error |
| $5 F$ | Single phase fault | A mains phase has been lost | Check mains voltage |

NOTE

In the event of an "OC6" (Motor Overload) failure there is a 3-minute delay before resetting is possible. This is a requirement of UL508C. This delay is intended to allow time for the motor to cool.
If power is removed when the drive is in an "OC6" fault state, when the power is restored the "OC6" fault will still be present and the delay will still be active even if power was removed for longer than 3 minutes.

Lenze Americas Corporation
630 Douglas Street
Uxbridge, MA 01569
USA
으․ 800 217-9100
屋 508 278-7873
$\equiv==$ marketing@lenzeamericas.com
\# www.Lenze.com

Service
Lenze AC Tech Corporation
630 Douglas Street
Uxbridge, MA 01569
USA
요 - 508 278-9100
508 278-6620
쿨 repair@lenzeamericas.com

[^0]: ${ }^{(1)}$ These parameters take effect only after power-up, h58 reset, "NMT reset node", or "NMT reset communication services"

[^1]: ${ }^{(1)}$ These parameters take effect only after power-up, h58 reset, "NMT reset node", or "NMT reset communication services"

[^2]: ${ }^{(1)}$ These parameters take effect only after power-up, h58 reset, "NMT reset node", or "NMT reset communication services"

[^3]: ${ }^{(1)}$ These parameters take effect only after power-up, h58 reset, "NMT reset node", or "NMT reset communication services"

[^4]: ${ }^{(2)}$ Implemented as inhibit; all indicated bits must be in opposite state for controller to be enabled.

[^5]: (1) The drive can only be restarted if the error message has been reset; see c70

